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INTRODUCTION

In the early 1800s, Karl Baedeker, a German pub-
lisher, launched a series of travel guidebooks. By the
twentieth century, the guidebooks had achieved such
international fame that his name became synony-
mous with the genre. As clinicians wade into the
flood of clinical research being published, a guide-
book can be a handy navigational aid. In this article,
we offer a Baedeker for reading the literature, an
approach distilled from our three decades of clinical
practice and research experience. Interested readers
can find more detail in our recent series on research
methods in The Lancet (1–11).

Reading research is mandatory if a clinician is to
keep up. With greater age and experience, clinical
practice should improve. Paradoxically, however,
greater age and clinical experience often translate
into rusty practice. As has been shown for treatment
of hypertension, one of the strongest determinants of
appropriate practice is number of years since medical
school graduation; stated alternatively, practice qual-
ity deteriorates over time (12, 13). Keeping current is
difficult after leaving formal training, and that diffi-
culty may be greater for those who practice in
smaller communities (14). If one cannot (or chooses
not to) read, then one’s practice is condemned to
becoming obsolete. This indirectly hurts patients.

A second benefit of critical reading of clinical
research is appropriate adoption (or rejection) of new
technologies. Obstetrics and gynecology has a long,
blemished record of adoption and dissemination of
new tests and procedures without evidence of benefit

(15). Episiotomy, one of the most common opera-
tions performed on adults in the last century, swept
into practice based on DeLee’s analogy that child-
birth is tantamount to impalement on a pitchfork
(16). Urinary estriol measurement to monitor a fetus
thought to be in jeopardy has been replaced by an
even more expensive and cumbersome test (nonstress
testing) for which no evidence of benefit exists either
(17). Electronic fetal monitoring took U.S. obstetrics
by storm in the absence of demonstrable benefit; a
quarter century of study has failed to show any
lasting benefit to babies (18), and the poor predictive
value of worrisome tracings has needlessly driven up
the cesarean delivery rate. Liquid-based cervical cy-
tology screening has not been shown to reduce cer-
vical cancer incidence or mortality, and the cost per
case of cancer detected is higher with this approach
than with conventional cytology (19). Ironically, poor
women at highest risk of this cancer may not be able to
afford the screening (20). Reports of new laparoscopy
operations have recently been retracted by an editor,
because the reported information could not be corrob-
orated (21, 22). This hurt patients as well.

While reading clinical research is clearly impor-
tant, the task is daunting. First, the volume being
published is overwhelming, with an estimated 25,000
biomedical journals in print. One challenge is pick-
ing and choosing what to read. In general, most
readers should limit themselves to articles that are
both relevant to their practices and likely to be of
high scientific value. These two criteria will imme-
diately narrow the field.

Once an article is selected, another problem emerg-
es: many clinicians in obstetrics and gynecology
report that they cannot critically read the literature
(23). Our graduates leave their training full of the
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outputs of science (stuffed like overstuffed sofas),
yet they are not sufficiently scientific in their ap-
proach either to the literature or to their practices.
Stated alternatively, scientific illiteracy remains a
stubborn problem and a major failing of medical
education (24). To address this problem, this guide
will outline the major types of clinical research,
describe two fundamental questions about validity,
outline a simple four-point check list for readers,
describe the interpretation of common measures of
association, and highlight the rules of conduct for
performing and reporting randomized controlled tri-
als. Although our focus will be research involving
humans, the same principles apply to animal and
laboratory research as well.

TWO APPROACHES TO
CLINICAL QUESTIONS

Should the peritoneum at the vaginal cuff be closed
as one completes an abdominal hysterectomy? Gy-
necologists face this question hundreds of thousands
of times annually in the U.S. The answer may influ-
ence operating time, morbidity, and speed of recov-
ery. Hence, clinicians need to know the answer. One
approach is total enumeration, study every abdom-
inal hysterectomy nationwide, tally their outcomes,
and see which closure technique is preferable. This
“census” approach is generally impractical for logis-
tical reasons. Hence, the more common tactic is to
select a sample of patients having the cuff left open
or sutured shut, study their outcomes, and then infer
from the sample to the broad population of women.
Regarding cuff closure, studies using different types
of samples have addressed this question, and the
answer remains unclear (25–27).

Are the Findings Valid?

When readers encounter research results, they need
to consider two basic questions. First, did the study
measure what it set out to measure? This character-
istic is termed internal validity. It can be under-
mined by several types of bias described below.
Assuming the study results have internal validity, the
next question to answer is external validity: can the
results be extrapolated (generalized) to one’s
patients?

Herein lies a paradox. Observational studies, which
reflect the usual practice of medicine, are vulnerable
to bias but are more representative of women in
general than are participants in randomized con-
trolled trials. The latter are all volunteers who pass

inclusion criteria. In contrast, randomized controlled
trials, if properly done, are more immune to bias but
are less likely than observational studies to represent
rank-and-file patients. Observational research may
have poorer internal validity and better external va-
lidity than randomized controlled trials; the opposite
is true for randomized controlled trials. Obviously, if
a study lacks internal validity, generalizing these
invalid results is worthless and possibly misleading.

Measuring Dichotomous Outcomes

The terminology used in measuring dichotomous
outcomes (e.g., sick or well) is often confusing and
inconsistent. This makes reading research reports
needlessly difficult. For example, many investigators
misuse the simple term rate. Probably the most no-
table example is the misnomer “maternal mortality
rate,” which has appeared in textbooks and research
reports for decades.

As shown in Figure 1, a ratio is the product ob-
tained by dividing one number by another. Whether
the numerator and denominator are related deter-
mines the type of ratio. As shown on the right side of
Figure 1, if the numerator is not included in the
denominator, then the product remains a ratio. In the
maternal mortality example, a woman who dies of
complications of a complete hydatidiform mole
would be included in the numerator but not the
denominator (women with live births). Hence, the
venerable maternal mortality “rate” is, in fact, a ratio.

Fig. 1. Algorithm for distinguishing rates, proportions, and
ratios. Reprinted with permission from Elsevier Science (Lancet
2002;359:57–61).

S36 Obstetrical and Gynecological Survey



Another example would be the abortion ratio: the
number of induced abortions divided by the number
of live births in a population.

If the numerator is included in the denominator, the
product may be either a rate or a proportion. A rate
indicates the risk of an outcome in a population as a
function of time. Rates have two hallmarks: units of
time and a multiplier. An example would be the
incidence rate of syphilis in 1999: 13.2 cases per
100,000 population per year (28). In contrast, a pro-
portion does not have a time element. An example
would be the proportion of adult women in the U.S.
who were cigarette smokers in 1999: 21.6 per 100
women, or 21.6% (28). For both rates and propor-
tions, all those in the numerator are included in the
denominator.

MEASURES OF ASSOCIATION

A less informative way of comparing two groups
being studied is hypothesis testing. The investigator
assumes that no difference exists between the two
groups and then sees if the results in the sample
studied are consistent with that assumption. If the P
value is less than .05, then the null hypothesis is
rejected, and a real difference is assumed. This ap-
proach of raising (and destroying) a straw man is not
intuitive to clinicians. . .or to their patients.

Hence, the preferred way of comparing two groups
that have dichotomous (i.e., positive or negative)
results is by interval estimation (29). Relative risks
and odds ratios are the usual measurements reported.
The relative risk (RR) (also termed a rate ratio or
risk ratio) is simply the rate of outcome in the ex-
posed group divided by the rate in the unexposed
group. Ratios higher than 1.0 imply an increased risk,
and vice versa. Because the units (e.g., per 100
patients) divide out in the calculation, relative risks
and odds ratios have no units (e.g., 3.2).

The odds ratio (OR) is the usual measure of
association in case-control studies. This term indi-
cates the odds of exposure among the cases (those
with the condition) divided by the odds of exposure
among the controls (those without the condition). As
shown in Figure 2, the odds of exposure among cases
is a/b and that among controls is c/d, so the ratio is
(a/b)/(c/d). Algebraic division yields the final for-
mula for the odds ratio: ad/bc, which is also termed
the cross products ratio (30).

The interpretation of the odds ratio is analogous to
that of the relative risk: ratios higher than 1.0 imply
increased risk, and those below a protective effect.
When the condition being studied is uncommon (say,

�5%), then the odds ratio becomes a good proxy for
the true relative risk. Hence, the two terms are often
used interchangeably. In reality, one cannot calculate
a true relative risk for a case-control study, since the
denominator of persons at risk is not known.

In any study, the result is only guess (often termed
a point estimate) as to what is happening in the
larger population. Accordingly, readers need to know
how much precision the estimate has. To answer this
question, researchers usually calculate confidence
intervals (CI) around relative risks and odds ratios.
These intervals designate a range of plausible values.
The wider the confidence interval, the less precise is
a result, and vice versa. If a study is repeated 100
times with the same sample size, then 95 times out of
100 the true value of the relative risk or odds ratio
will fall within the confidence interval. In addition, if
a 95% confidence interval does not cross 1.0, then
the difference observed is statistically significant at

Fig. 2. The cross-products ratio (odds ratio) in a case-control
study.
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the traditional .05 level. However, using the confi-
dence interval as a sneaky approach to hypothesis
testing is inappropriate (31).

TAXONOMY OF RESEARCH TYPES

An important first step to reading a research report
is to figure out what type of study has been done.
This can be difficult for two reasons. Often, investi-
gators do not explicitly say what they have done, or
they use cumbersome verbiage to describe simple
study designs. For example, “open-label, single-arm,
multicenter, clinical trial” is a recent 15-syllable de-
scription of a case-series report. A second, more
worrisome obstacle is that investigators sometimes

do not know what they have done. The most common
error may be calling a retrospective cohort study a
case-control study (32–34). That such mistakes sur-
vive the editorial process is more concerning.

Deducing the study type is fundamentally impor-
tant. The type of study (its research anatomy) dictates
what it can do (its physiology). In addition, for some
types of research (the randomized controlled trial),
a well-established set of rules exists, so the reader
can easily check to see that the rules of conduct were
obeyed (35, 36).

The universe of all clinical research can be neatly
divided into two principal categories: experimental
or observational (Fig. 3). How the patients got their
treatments (or other exposures) separates the two. In

Fig. 3. Algorithm for classification of common types of clinical research. Reprinted with permission from Elsevier Science (Lancet
2002;359:57–61).
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observational research, patients receive their treat-
ments in their usual way. Analogous to a football
game, the investigator in observational research sits
passively on the sidelines and watches the game,
noting what plays are chosen and monitoring the
score. In experimental research, the investigator in-
tervenes in the clinical setting and actively assigns
the treatments (or other exposures) rather than the
patient’s clinician doing this. In the football analogy,
the investigator at the sidelines calls in every play to
the quarterback then assesses the results.

Observational research dominates the literature. In-
deed, one recent survey revealed that about 80% of
the articles published in obstetrics and gynecology
are observational (37). Within the world of observa-
tional research, two major types exist: studies with or
without a comparison group. For simplicity, we will
term those with a comparison group analytic studies
and those without, descriptive.

DESCRIPTIVE STUDIES

One definition notes that a descriptive study is
“concerned with and designed only to describe the
existing distribution of variables, without regard to
causal or other hypotheses” (38). The important qual-
ifier here is that causal hypotheses are beyond the
purview of this type of study, a feature sometimes
forgotten by zealous investigators. Descriptive stud-
ies are often the first exploration of a new health
problem, such as toxic shock syndrome. They de-
scribe the characteristics of those affected and the
features of the disease itself.

Good descriptive reporting has been likened to
good newspaper reporting; a number of key “W”
questions need to be answered (2). Who has the
disease? Characteristics of those with the disease
often provide clues; for example, the incidence of
ovarian cancer increases with age, and preeclampsia
is more common among primigravidas than among
women who have children.

What is the disease in question? A clear, specific,
and measurable definition of what is a case of the
disease is a prerequisite to its study. For example, the
scores of research studies on endometritis are largely
uninterpretable, inasmuch as no uniform case defini-
tion exists. How tender must a uterus be, and who
determines it? Fever, an objective outcome, is a
better proxy to study than is endometritis.

Why did the condition arise (what clues about
causation might be evident)? Hunches from descrip-
tive studies can be tested in more rigorous analytic or
experimental research. For example, early descrip-
tive reports of benign hepatocellular adenomas sug-

gested a link with high-dose oral contraceptives. This
hypothesis led to a large case-control study, which
confirmed and quantified the association (39).

When does the disease occur? Temporal relation-
ships can often provide insights into etiology. For
example, the peak incidence of cervical cancer is
several decades earlier than that of ovarian cancer,
suggesting different etiologies. A rise in primary and
secondary syphilis rates in the 1980s was linked with
exchanging sex for drugs in crack houses in U.S.
cities (40). An epidemic of endometrial cancer in the
1970s was temporally associated with the use of
unopposed estrogen replacement therapy, a common
practice in that era (41). The recent epidemic of
multiple births in the U.S. has been attributed largely
to assisted reproductive technologies, which raises
serious medical, financial, and ethical concerns (42).

Where does the disease occur (or not occur)?
Syphilis today is rare in the U.S., except in the
Southeast (43). Rates of induced abortion are in-
versely related to distance from a metropolitan area,
where most abortion providers are located (44).
Sperm counts may decline during the summer in hot,
humid locales (45).

The final “W” may be the most important: so
what? What is the clinical import of the report? The
usefulness of descriptive reports varies widely, from
first announcements of new and important illnesses
to “me too” additions of a few more cases to the
world’s literature.

Several types of descriptive studies appear in the
medical literature. At the bottom of the research
hierarchy is the case report (Fig. 3). When more
than one patient is reported, the study design be-
comes a case-series report. Case-series reports often
herald an epidemic. For example, the occurrence of a
number of cases of clear-cell carcinoma of the va-
gina, an uncommon event, suggested the presence of
an epidemic in New England. A subsequent case-
control study linked the disease to in utero exposure
to diethylstilbestrol (46), although these data may
contain substantial bias (47).

Another type of descriptive research is the preva-
lence study. This can be thought of as a snapshot of
a community at one point in time. For example, the
federal government periodically conducts the Na-
tional Survey of Family Growth (48), a household
interview of women across the U.S. It provides a rich
source of information about family planning, family
size, and other demographic information. Another
ongoing survey is the National Hospital Discharge
Survey, which abstracts data from the face sheet of
patients discharged from short-term, nonfederal hos-
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pitals across the country. Again, this survey provides
valuable information about diseases and treatments
in a representative sample of American acute-stay
hospitals (49).

Surveillance is yet another important type of de-
scriptive study. This entails watchfulness over a
community, with feedback to the community about
the results an important element (38). Active surveil-
lance makes a determined effort to find cases of
interest; passive surveillance relies on existing re-
porting systems, such as reporting of chlamydia
cases to state health departments. As might be pre-
dicted, the yield of active surveillance is higher than
passive. Active surveillance played a pivotal role in
the eradication of naturally occuring smallpox from
the planet, and the same may occur soon with polio
as well (50).

An important limitation of descriptive studies with-
out comparison groups is that they allow no testing of
hypotheses about causation. Although they may gen-
erate hunches as to causation, only studies with a
comparison group (e.g., analytic and experimental)
have this ability. A common error is making causal
deductions based on case-series reports; substantial
harm has resulted (51).

ANALYTIC STUDIES

The second major type of observational study is the
analytic study. Here, the investigator has a compar-
ison (or control) group, a powerful scientific tool.
Comparison groups provide investigators a bench-
mark against which to compare the study group. For
example, in a cohort study, the comparison group
indicates how frequent is the disease (or other out-
come) in the community. If disease is more common
among those exposed than among the comparison
group not exposed, then a positive association exists.
An example would be assisted reproductive technol-
ogies and multiple gestations. If less disease occurs
among the exposed than among those not exposed,
then the exposure is associated with a protective
effect. Here, an example would be oral contracep-
tives and ovarian cancer.

Cross-sectional, case-control, and cohort studies
are the most common types of analytic studies. A
cross-sectional study can be thought of as a snap-
shot at one point in time (Fig. 3). Both exposure and
outcome are determined simultaneously. Although
this keeps costs down, it also leads to problems in
judging temporal associations. An example would be
a study of pica and iron-deficiency anemia in preg-
nant women in labor. Upon admission, all patients
would be queried about pica and all would have their

hematocrit determined. Given a positive association
between pica and anemia, the temporal (and causal)
association is unclear. Did eating starch or clay
crowd food out of the diet (or inhibit iron absorption)
and thus lead to anemia (52), or did anemia from
some other cause lead to cravings for pica? This
chicken-and-egg question cannot be resolved in a
cross-sectional study, because it focuses on preva-
lence rather than incidence. An exception would be
an exposure which surely preceded the outcome,
such as blood type or race.

COHORT STUDIES

In contrast, cohort studies are much easier to com-
prehend. They run forward in time from exposure to
outcome (4). If an outcome is more frequent among
those exposed than among those not exposed to a fac-
tor, then a positive association exists, and vice versa.
Because clinical practice flows forward in time from
exposure to outcome, this research design is intuitive.

While all cohort studies run forward in time from
exposure to outcome, not all are done in real-time
(Fig. 4). Stated alternatively, cohort studies can be
concurrent, nonconcurrent, or ambidirectional
(4). Regrettably, the terminology often muddies the
water here: synonyms for cohort study include lon-
gitudinal, incidence, follow-up, forward-looking, and
prospective. A concurrent cohort study enrolls per-
sons exposed and unexposed and follows them for-
ward contemporaneously to determine who gets the
outcome of interest. A nonconcurrent cohort study
goes back in time to comprise the groups of exposed
or unexposed (for example, through hospital charts
or employment records) and tracks them forward in
time to determine outcomes. Although the forward
direction is the same, the data collection process is
not contemporaneous. An ambidirectional cohort
study combines both approaches above; data gather-
ing is done historically and contemporaneously. This
can expedite getting results.

Cohort studies have important strengths. They are the
best way to determine the incidence of disease (along
with relative risks and confidence intervals), and they
also portray the natural history of disease. Starting with
a single exposure, an investigator can examine several
possible outcomes. However, a potential abuse here is
examining many outcomes and reporting only those
that emerge as statistically significant. Although case-
control studies are impractical for rare exposures, co-
hort studies are more efficient here. For example, one
could follow a cohort of women who skydive and a
similar group who do not and determine the frequency
of fractures in each group.
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Cohort studies have weaknesses as well. Selection
bias is inherent because the exposed and unexposed are
not allocated to their groups at random. For example,
women choose to skydive or not. Skydivers may differ
in important ways from other women, such as partici-
pation in other outdoor sports, not using seatbelts, or
other risky behaviors (53). Thus, the groups might not
be similar in all important respects except for skydiving
or not. In addition, cohort studies can be impractical for
examining diseases that are rare or that take decades to
develop. Nevertheless, several large cohort studies have
contributed important information, albeit at large ex-
pense (54).

Reports of cohort studies should meet several re-
porting requirements. The exposure needs to be
clearly defined. Likewise, the outcome should be
clear, specific, and measurable. Determination of
outcomes should be identical for both the exposed
and unexposed; blinding the observer as to the ex-
posure group can help to avoid subtle bias in making
this determination. Differential losses to follow-up
can lead to bias, and this problem becomes acute
when the observation period is long.

CASE-CONTROL STUDIES

Case-control studies work backward (5, 30). They
begin with a disease or condition (cases) and look
back in time at exposures that might be related to the

disease. For comparison purposes, a group of persons
without the disease (controls) undergoes the same
scrutiny. If the exposure of interest is more frequent
among the cases than among the controls, then a
positive association exists, and vice versa. This type
of research is especially useful for studying rare
events (such as cancer) or diseases that take a long
time to develop (such as heart disease); cohort stud-
ies are often impractical in these settings. Case-con-
trol studies often provide a “quick and dirty” way to
study potential associations.

In a case-control study, controls indicate the prev-
alence of the exposure in the community. If the
exposure is more common among cases (with the
disease or other outcome) than among the controls
(who are free of disease), then the exposure is posi-
tively associated with the outcome. An example
would be cigarette smoking and cervical cancer. In
contrast, if the exposure is less common among cases
than among control, a protective association is evi-
dent. An example here would be tubal sterilization
and ovarian cancer (55).

Case-control studies have made important contri-
butions to women’s health. For example, by identi-
fying risk factors, case-control studies led to impor-
tant reductions in the incidence of AIDS well before
the responsible virus had even been discovered. In
addition, this design has been used to study a wide

Fig. 4. Schematic diagram of concurrent, retrospective, and ambidirectional cohort studies. Reprinted with permission from Elsevier
Science (Lancet 2002;359:341–345).
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variety of potential associations, ranging from tan-
dem trucks and traffic accidents to cat ownership and
schizophrenia (5).

Case-control studies have a more sinister side,
however. Finding an appropriate control group can
be difficult, so selection bias is a common problem.
Although case-control studies can be easy to do, they
are also easy to do poorly, and the literature is replete
with flawed and misleading case-control studies. Be-
cause this type of study runs backward in time from
outcome to exposure, this design is conceptually
difficult for many clinicians.

Choosing appropriate controls is the Achilles heel
of this research design. Persons chosen as controls
should represent those in the community at risk of the
disease in question. For example, assume an inves-
tigator plans a study of the potential association
between oral contraceptives and venous thromboem-
bolism. Cases are new admissions to a medical ser-
vice, and controls are a random sample of women
admitted to the medical service with conditions other
than thromboembolism. Here the controls might have
a high prevalence of chronic illness, reduced mobil-
ity, and thus increased risk of developing clots. If so,
then this hospital-based control group would not be
representative of women in the general community,
and this would bias the results.

Although case-control studies are usually consid-
ered a faster way to answer a research question than
a cohort study, this is not always true. In settings
where the exposure of interest is rare, conducting a
case-control study can be prohibitively expensive.
For example, consider a case-control study of the
potential relationship between skydiving and frac-
tures. Cases would be women with new fractures
identified in a hospital emergency department, con-
trols a sample of those without fractures, and the
exposure recent skydiving. Because the proportion of
women in the community who engage in this sport is
so low, finding sufficient numbers of women who
had been exposed to skydiving would take a huge
study. This feature of case-control studies is not well
known: the prevalence of the exposure in the general
community drives the sample size in a case-control
study, not the frequency of the outcome. In this
skydiving example, a cohort study would be more
efficient.

Variations of Cohort Studies

Two other variations on the cohort theme are the
before-after study and the nested case-control study.
The before-after study is a common but weak de-
sign. An investigator wants to show the effect of an

intervention, commonly a drug. The researcher takes
baseline measurements, exposes the participants to
the intervention, and repeats the initial measure-
ments. An example would be administration of statin
drugs to women with high cholesterol values. If
cholesterol values decline after treatment, the inves-
tigator might infer that the decrease was the result of
the drug. However, without a contemporaneous con-
trol group, this inference is not secure. Regression to
the mean (38) may have been responsible, at least in
part. The more abnormal a value on first measure-
ment (e.g., cholesterol), the more likely it is to be
closer to the mean of the population on repeat mea-
surement. Alternatively, other influences may be in-
volved, such as a change in diet or exercise prompted
by alarm over the aberrant values and need for drug
therapy.

Nested case-control studies are sometimes built
into cohort studies or randomized controlled trials.
This approach can be useful when a measurement is
considered too difficult or costly to do on all partic-
ipants. An expensive blood test is a prototype. All
participants have a sample of blood taken on enroll-
ment, and the serum is frozen until the study is over.
Those in the cohort or trial who develop the illness
become cases; a random sample of well participants
becomes the control group. At this point, the inves-
tigator performs the expensive blood test on the
banked serum for only cases and controls (a small
fraction of the study participants). This avoids the
expense of running the laboratory test on the entire
group.

EXPERIMENTAL STUDIES

The experimental design in clinical medicine is
the closest proxy to the controlled experiment of the
basic scientist. Within this category, two principal
types exist: randomized controlled trials and non-
randomized controlled trials. Both are formal trials
in which the investigator intervenes and decides
which participant gets which exposure. Participants
are then followed forward in time to measure out-
comes, and the study is analyzed like a cohort study.
The important difference between cohort and exper-
imental studies is assignment of exposures by the
investigator in the latter.

In nonrandomized trials, some method short of
true randomization is used to assign the exposures.
An example of this approach is alternate assign-
ment. This tactic has been used in large studies in
which participants are assigned to treatment by alter-
nate months, for example, restricted versus liberal
use of electronic fetal monitoring (56). With large
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numbers of participants, this approach may approach
(but never equal) randomization. This approach has
important methodological weaknesses. The U. S.
Preventive Services Task Force (Table 1) terms such
studies Level II-1, indicating less scientific rigor than
randomized controlled trials (Level I) (57). Impor-
tantly, allocation concealment is often impossible to
achieve in trials that do not use random allocation.
Although some researchers refer to these studies as
“quasi-randomized,” we believe the term is mislead-
ing, an example of medical puffery. “Random,” like
“pregnant,” is a dichotomous adjective. A trial can-
not be “quasi-randomized” any more than a woman
can be “quasi-pregnant.”

BIASES

Bias has a different meaning in clinical research
than in everyday life. In common parlance, bias
means prejudice. In research, it means a systematic
distortion or deviation from the truth (3). Biases are
pervasive in observational research. The challenge
for readers is to detect those biases and figure out
how they might have influenced the results pre-
sented. We will provide a simple four-point check
list to help with this assessment.

Selection bias results from a lack of comparability
between the groups and is unmeasured. Stated alter-
natively, the groups being studied are different at the

starting blocks. For example, one group might be
older, sicker, or have a higher proportion of cigarette
smokers. This “stacks the deck” before the analysis.
In a cohort study of failures after two different meth-
ods of tubal sterilization, one group might be
younger (and hence more fertile) than the other (58).
In a case-control study of exposure to ovulation-
induction agents and later ovarian cancer, poorly
chosen controls might be of higher parity and thus at
lower than average risk of exposure to fertility drugs.

Information bias results from a lack of compara-
bility in data gathering between groups. Synonyms
for this include ascertainment, measurement, and ob-
servation bias. In a cohort study, information about
development of the outcome should be determined in
exactly the same way for both the exposed and un-
exposed groups. In a case-control study, information
about prior exposures should be collected identically
for both cases and controls. Information bias is a
common problem in case-control studies, especially
those that rely solely on recall of past exposure
(without corroboration from other sources such as
medical or pharmacy records).

Information bias comes in two varieties: system-
atic misclassification (working preferentially in one
direction) or random misclassification (noise in the
system). The effects differ. Systematic misclassifica-
tion increases or decreases the measure of associa-
tion; the odds ratio or relative risk spuriously goes up
or down. In contrast, random misclassification ob-
scures real effects; the odds ratio or relative risk
moves toward 1.0, wiping out an effect.

Recall bias poses a huge problem in case-control
studies that rely on memory of remote events. Cases
(who are sick or who have the condition of interest)
have likely searched their memories to explain why
this misfortune has befallen them. In contrast,
healthy controls have no such motivation to rum-
mage through their memories. Thus, cases are more
likely to recall distant events than are controls; this
relative underreporting of past exposures by controls
biases case-control studies that do not have indepen-
dent validation of exposure.

A case-control study of use of oral contraceptives
and limb-reduction defects among children born later
illustrates this problem (59). Women who had given
birth to children with serious limb-reduction defects
were interviewed as cases; controls were women
with healthy children of a similar age. At an average
of 4.5 years after the birth of the children involved,
mothers were asked about prior exposure to oral
contraceptives (about 5 years before the interview).
As might be expected, a higher proportion of cases

TABLE 1 Levels of evidence in clinical research

Quality of evidence
I Evidence from at least one properly designed random-

ized controlled trial.
II-1 Evidence obtained from well-designed controlled trials

without randomization.
II-2 Evidence from well-designed cohort or case control

studies, preferably from more than one center or re-
search group.

II-3 Evidence from multiple time series with or without the
intervention. Important results in uncontrolled experi-
ments (such as the introduction of penicillin treatment in
the 1940s) could also be considered as this type of evi-
dence.

III Opinions of respected authorities, based on clinical ex-
perience, descriptive studies, or reports of expert com-
mittees.

Strength of recommendation
A Good evidence to support the intervention.
B Fair evidence to support the intervention.
C Insufficient evidence to recommend for or against the

intervention, but recommendation might be made on
other grounds.

D Fair evidence against the intervention.
E Good evidence against the intervention.

U.S. Preventive Services Task Force (57).
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recalled use of oral contraceptives than did controls.
Recall bias among controls probably accounted for
this association; no biological explanation is readily
evident.

Although recall bias is commonly blamed for spu-
rious associations in case-control studies, investiga-
tors in Sweden have provided compelling documen-
tation of its existence and its potency. The alleged
association between induced abortion and later de-
velopment of breast cancer has become a cause ce-
lebre among some opponents of legal abortion
(www.abortionbreastcancer.com). Indeed, many
case-control studies have consistently found a posi-
tive association. However, women with breast cancer
are likely to have searched their memories for pos-
sible causes of this deadly disease, and they are more
likely to report honestly to researchers. Healthy con-
trols have no such motivation. In some Scandinavian
countries (60, 61), all citizens receive a unique iden-
tification number at birth that follows them for life.
In addition, health care is provide by the state, offer-
ing a unique opportunity to study health through
national, comprehensive records with excellent link-
age capability.

The investigators performed the same case-control
study of abortion and breast cancer using two differ-
ent approaches to information gathering (61). In the
traditional approach, they interviewed cases and con-
trols in person. In the alternative approach, they
repeated the study using national health care records.
The findings were striking: fewer controls than cases
accurately reported prior abortions to the interview-
ers (abortions documented by government records).
The likelihood of this degree of underreporting of
abortions by controls having occurred by chance was
remote. Using the traditional case-control approach
to data collection, the study found no effect of abor-
tion on breast cancer risk; using the more compre-
hensive national statistics, abortion was associated
with a 40% reduction in risk. The case-control liter-
ature, which consistently points to an association, is
consistently biased (62). Bias, not biology, is at work
here.

Many clinicians would agree that confounding is
aptly named, because it readily confounds under-
standing. In everyday use, confounding means con-
fusing or bewildering; in epidemiology, it means a
mixing or blurring of effects. An investigator sets out
to examine the association between an exposure and
an outcome but winds up measuring the influence of
a third factor (the confounding factor). A confound-
ing factor is associated with both the exposure and
the outcome but is not involved in the causal path-

way. Even this definition is not much help; con-
founding is often better grasped through clinical ex-
amples. The effects of confounding are not intuitive
or logical to most clinicians.

For example, a cohort study might examine the
putative association between IUD use and salpingitis.
Exposed women are those who choose an IUD; un-
exposed are women not using contraception. In re-
cent decades, women choosing IUDs for contracep-
tion were older than other users of contraception, and
the risk of upper genital tract infection is inversely
related to age (63). Thus, age would be a potential
confounding factor in this study: age is associated
with both the exposure (choice of an IUD) and with
the outcome (a reduced risk of salpingitis) but not
directly involved in the causal pathway to infection.
In this example, the older age of IUD users would
artificially lower the relative risk (few older women
get salpingitis, regardless of contraceptive choice).

Age might have the opposite effect in a case-control
study of intrauterine contraception and myocardial in-
farction. Cases would be women with a confirmed
myocardial infarction, and controls a sample of healthy
women in the community. The exposure would be
contraceptive used in the past 3 months. IUD users tend
to be older than other users of contraception, and older
women are more likely to have heart attacks. Here, age
would be a potential confounding factor: age is associ-
ated with both the exposure (choice of an IUD) and the
outcome (an increased risk of myocardial infarction)
but is not directly involved in the causal pathway to
coronary occlusion. In this example, age might lead to
a spurious positive association between IUD use and
heart attack.

Unlike selection bias and information bias, confound-
ing can be controlled after the fact. Stated alternatively,
if selection bias or information bias is present in a study,
the investigation is irrevocably corrupted. On the other
hand, if confounding is present, the investigator can
control for its effects, provided the researcher antici-
pated it and gathered information about it during the
data collection phase. Control of confounding can take
place during the data gathering or during the analysis
phases of a study.

CONTROLLING FOR CONFOUNDING

Restriction is the simplest way to control for a po-
tential confounding factor. For example, if cigarette
smoking is deemed a potential confounding factor in
the relationship between oral contraceptives and cervi-
cal cancer, simply exclude smokers from the study.
This neatly eliminates any effect that smoking might
have on the relationship. Although valid, this approach
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is not popular for two practical reasons. First, this
exclusion limits the external validity of the findings:
one can extrapolate the results only to women who do
not smoke. Second, this approach inevitably reduces the
sample size and thus the ability to detect effects of a
given size should they exist (power).

Matching is another established approach to con-
trolling for confounding. If smoking is deemed to be
a potential confounding factor in a case-control study
of oral contraception and cervical cancer, then for
every case who smokes, a corresponding control who
smokes is enrolled. Similarly, for every nonsmoking
case, a nonsmoking control is selected. This maneu-
ver makes the cases and controls homogeneous for
smoking status. Although a valid approach to con-
trolling confounding, matching can be cumbersome
to do, slowing enrollment. In addition, an investiga-
tor cannot examine the effect of any confounding
factor for which matching is done.

Stratification is a variation on restriction, a form
of post hoc restriction done in the analysis phase
rather than during the recruitment and accrual phase
of a study. If an investigator suspects that smoking
may confound the relationship between oral contra-
ceptives and cervical cancer, then the researcher can
examine the relationship separately for women who
smoke and women who do not smoke to see if the
same association is evident.

A mathematical technique, termed the Mantel-
Haenszel procedure (3), combines the various 2 � 2
tables (here, smokers and nonsmokers) into a single
summary estimate of the effect. The tables (or strata)
are weighted inversely to their variance in deriving the
summary statistic; stated alternatively, 2 � 2 tables with
large numbers contribute more to the final statistic than
do those with few patients. If the summary estimate of
the treatment effect from the Mantel-Haenszel proce-
dure differs substantially from the crude estimate from
the overall data set, then confounding is deemed
present.

An example may help show how this works. Assume
that a large cohort study is following a group of mar-
ried, parous women. The research question is the po-
tential association between use of an IUD and second-
ary infertility. The exposed group includes 2000
women using an IUD; the unexposed group consists of
2000 women not using an IUD. Secondary infertility is
defined as failure to conceive a planned pregnancy
within 12 months after discontinuation of the current
contraceptive method. As shown in Figure 5A, use of an
IUD is associated with an overall three-fold increase in
the risk of infertility (RR 3.0; 95% CI, 2.0–4.5). This is
the crude estimate for all 4000 women.

However, this result seemed implausible to the inves-
tigator, and she suspected that cigarette smoking may
be a confounding factor. With the permission of her
Institutional Review Board and the consent of the par-
ticipants, she collected saliva for cotinine levels on all
participants. Figure 5B presents the same 4000 partici-
pants stratified by whether their saliva indicated recent
cigarette smoking. As shown in the top 2 � 2 table, the
proportion of nonsmoking women who developed in-
fertility was 1%, independent of IUD use. However, in
the bottom table, smoking women had a much higher
risk of infertility: 6%. Nevertheless, the risk was iden-
tical in both exposed and unexposed. The Mantel-Haen-
szel adjusted relative risk of infertility is 1.0 (95% CI,
0.6–1.6); the crude relative risk without adjustment for
smoking was 3.0.

Because two relative risk estimates (1.0 vs. 3.0)
differ widely, confounding is present in this example.
Here, the investigator would present the Mantel-

Fig. 5. Hypothetical cohort study of intrauterine device use
and secondary infertility. A, crude analysis of entire cohort. B and
C, analysis stratified by smoking status. After control for the
confounding effect of smoking, the increased risk disappears.
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Haenszel adjusted (for smoking) relative risk esti-
mate of 1.0 as the more accurate. The confounding
effect of smoking caused a spurious three-fold in-
crease in risk, which disappeared when the con-
founding was controlled. Smoking was associated
with both the exposure (choice of an IUD; note top
left cell in table of smokers) and with the outcome
(infertility) but was not directly involved in the
causal pathway.

Chance is the final item in the four-point checklist.
Its listing as the last item is intentional. Many readers
(and some editors) jump to the P value to judge if a
study is valid – and worth reading. As shown in the
example above, bias can easily result in highly signifi-
cant findings that are completely wrong (P � .001 in
Figure 5A). Hence, one needs to ask this question: could
the findings of a study be due to selection bias, infor-
mation bias, or confounding? If the results cannot be
accounted for by these three considerations, could they
be due to chance alone? Here, the P value comes into
play. By convention, a P value of �.05 is used, mean-
ing that a difference this large could be due to chance
less than one time out of 20. However, excessive reli-
ance on P values in clinical research has often led to
incorrect interpretation (1, 31). If results still cannot be
explained away, then they may be real and of clinical
importance.

RANDOMIZED CONTROLLED TRIALS

Randomized controlled trials stand at the pinna-
cle of the research hierarchy. Indeed, when medical
historians look back upon the twentieth century, the
development of the randomized controlled trial will
stand out as one of its sentinel achievements (64).
The unique contribution of randomized controlled
trials is avoidance of bias. Bias is innate in observa-
tional research. The randomized controlled trial is the
only known way to avoid bias in clinical research.
When one is examining a large effect, such as ciga-
rette smoking and lung cancer, almost any study
design will unearth the association. However, the
randomized controlled trial really shines when look-
ing for small associations. Here, bias in observational
studies could obscure or exaggerate small but real
effects. Only by ridding the trial of the distorting
effects of bias can one ferret out the truth.

Assignment to treatments by chance, rather than
choice, is the defining feature of randomized con-
trolled trials. This simple, yet powerful, tool en-
sures that the groups under study are similar in all
important respects except for the exposure in ques-
tion. By balancing baseline characteristics, ran-

domization levels the playing field at the start of
a study; selection bias is precluded. By having
outcomes measures defined in advance and deter-
mined in the same way for the groups under study,
information bias is avoided or minimized. Poten-
tial confounding factors should be balanced be-
tween the two groups, assuring comparability at
the starting blocks, except for chance imbalance.
This is important for known confounding factors
but even more critical for those factors that are
unsuspected. They, too, will be equally distributed
among the groups under study.

Methods of Randomization

Despite its importance in avoiding bias, randomiza-
tion is often not done well. . ..or at all. . .in published
trials. Some techniques called “random” are not; this
appeared in 5% of a sample of trials examined (65).
Using the last digit of hospital chart numbers (odd or
even) or year of birth is not a random technique, be-
cause patients do not receive chart numbers (or enter the
world) at random. An even worse example of a non-
random technique claiming to be random is use of
alternate days or weeks to assign treatments (66).

Some techniques are truly random but suboptimal
for other reasons. Flipping a coin to determine the
next treatment assignment is random, yet it is vul-
nerable to tinkering. Investigators or those enrolling
participants may find a string of heads unnerving and
may, therefore, insert a tail in the sequence (since a
tail was “overdue”). Chance, however, has no mem-
ory. In addition, flipping a coin multiple times leaves
no paper trail than can be audited at a later time. For
example, the only randomized controlled trial in the
world to have found a significant reduction in peri-
natal mortality associated with use of electronic fetal
monitoring used coin tosses in two Greek hospitals
(67). Widely different sample sizes resulted; the like-
lihood of a disparity this large occurring by chance
alone is remote. Stated alternatively, the odds are
about 19 to 1 that the authors did not do what they
reported, raising serious concerns about the validity
of the results.

Preferred approaches to developing a randomization
sequence include tables of random numbers or comput-
er-generated random numbers (6). Using odd or even
numbers to assign participants to two treatment arms is
the simplest approach (simple randomization). With
small trials, imbalance in the size of the treatment
groups can occur by chance alone. However, when
trials are larger than about 200 participants, the poten-
tial for a big disparity largely disappears.
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Restricted randomization is an alternative ap-
proach; it controls the likelihood of getting a chance
imbalance in the numbers assigned to the treatment
groups. A common type of restricted randomization
is blocking. Random permuted blocks assign par-
ticipants to treatments by chance but guarantee that
equal numbers are assigned to each group as the trial
progresses. Instead of randomly allocating all study
subjects (simple randomization), this process ran-
domizes participants in a series of blocks of specified
sizes, such as 6 or 8 participants. For example, with
a block size of 6 participants, 20 different permuta-
tions of three assignments to A and three to B exist
(e.g., AAABBB, ABBBAA, AABBAB, etc.) Each of
these blocks is given a number or range of numbers
and the sequence of 6-participant blocks is chosen
with a random number table or computer-generated
sequence of numbers. Thus, after every sixth partic-
ipant (e.g., at 6, 12, 18, 24, etc.) equal numbers will
have been assigned to A and to B. The longer the
block, the less likely inquisitive investigators or
study staff are to be able to decipher the block length
and thus the upcoming assignment. In addition, ran-
domly varying the block length and inserting a run of
simple randomization (a process called mixed ran-
domization, described later) can render the alloca-
tion sequence nearly impenetrable (11).

Allocation concealment is the second critical bias-
eliminating element of randomization. This term means
that both participants and trial staff are unaware of the
upcoming treatment assignment. Allocation conceal-
ment needs to be distinguished from blinding as to
treatment. Allocation concealment is mandatory and
always possible; treatment blinding is not always pos-
sible and may not always be important. The value of
allocation concealment in avoiding selection bias has
only recently been appreciated. . .and quantified (7).
Four separate investigations have concurred: failure to
maintain allocation concealment in randomized con-
trolled trials exaggerates treatment effects by as much
as 40%. Bias this large may overwhelm real treatment
effects.

Given a truly random sequence of treatment as-
signments, why should knowledge of the upcoming
assignment introduce bias? Armed with that fore-
knowledge, those recruiting participants can steer
subjects into or out of the study at will, thus intro-
ducing selection bias. Ironically, randomization is
designed expressly to avoid selection bias. Assume
that a trial is comparing three different operations for
genuine stress urinary incontinence (68). The physi-
cians recruiting participants can see all the upcoming
assignments, which are posted in the clinic. A phy-

sician interviews a patient with severe incontinence,
and the physician believes that a Burch procedure is
the best option for the patient. If the next treatment to
be assigned was an anterior colporrhaphy, the phy-
sician could send the patient to the laboratory (or
lunch) during which time another participant gets
assigned to the vaginal repair. When the initial pa-
tient returns, a Burch procedure is, to everyone’s
delight, the next assignment. The patient with severe
incontinence gets a Burch procedure, but not due to
chance. If this process were to be repeated, it would
overload the Burch procedure group with difficult
cases, biasing the comparison against this operation.

As with methods of random-sequence generation,
methods of allocation concealment vary widely in their
rigor. The following techniques are considered ade-
quate: sequentially numbered, sealed, opaque envelopes
with method indicator card inside; pharmacy-controlled
distribution of numbered pill bottles; and central ran-
domization (e.g., telephone calls to a central office
where the randomization sequence is maintained). Each
of these approaches, if properly used, should guard
against discovery of the upcoming assignment. Despite
the importance of allocation concealment, only a quar-
ter of published trials provide readers sufficient infor-
mation to confirm that this was done (7).

Each of these methods is vulnerable to tampering,
and we have learned of examples of each (69). For
example, study staff have taken opaque envelopes to
the “hot light” in the radiology department to see the
writing on the card inside. A pharmacist ran out of an
experimental cephalosporin one weekend, and, to
avoid slowing down recruitment, allocated all partic-
ipants joining the study over the weekend to the
comparison antibiotic, cefoxitin, which he had in
stock. A busy clinician cajoled a central office into
providing the next several treatment assignments,
because he anticipated being “too busy” to call back
for each patient. . .and the office acceded to this
improper request. Randomized controlled trials are
“anathema to the human spirit” (69). Clinicians and
others involved with trials have a powerful personal
interest in figuring out the upcoming assignments.
Hence, investigators have a responsibility to build in
safeguards against deciphering that are equally pow-
erful. Readers deserve to know about these safe-
guards and whether they worked.

Reports of randomized controlled trials should
document that the randomization yielded groups sim-
ilar in all important respects, except for the exposure
being studied. The first table of such reports usually
fulfills this role. This table presents demographic and
other relevant clinical features by treatment group,
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e.g., age, race, parity. This enables readers to know
the types of participants enrolled. Can the results be
extrapolated to the readers own patients? In addition,
are the groups similar in all important respects except
for the exposure being studied?

A common error in many reports of randomized
controlled trials is statistical testing of baseline charac-
teristics. Investigators commonly perform tests to show
that no significant differences occurred; the far right
column of the baseline characteristics table typically
consists of P values. Statistical testing here addresses
the likelihood that difference seen between the groups
could be due to chance. This question is gratuitous for
a randomized controlled trial, since all differences in
baseline characteristics are known to be due to chance
(the investigator assigned participants to treatment at
random) (70). Thus, the likelihood that differences are
due to chance is 100%. Instead of performing statistical
tests, investigators should describe pertinent baseline
characteristics. For example, continuous variables, such
as age, should appear as an average with a measure of
variability, e.g., mean and standard deviation. Numbers
and proportions should be provided for categorical
variables.

BLINDING OF TREATMENT

Blinding, also termed masking, entails keeping
participants, healthcare providers, and outcome as-
sessors (those collecting data) unaware of who got
what treatment. Whereas allocation concealment
avoids selection bias, blinding is used to prevent
information bias and protects the random sequence
after allocation (8). If participants know which treat-
ment they are receiving, then this might influence
their expectations and their compliance with the
treatment. If the clinicians involved are aware of the
treatment assignments, they may convey their opin-
ions—subtly or openly—to participants. Alterna-
tively, they might differentially apply co-interven-
tions to one group or the other (e.g., supplementary
treatments or care).

Blinding is especially helpful when the outcome
measure is subjective. In such cases, knowledge of
the treatment group can easily influence determina-
tion of the outcome. For example, in a placebo-
controlled trial of multiple sclerosis treatment, un-
blinded neurologists found a benefit of treatment,
whereas their blinded colleagues did not. Pain is
another outcome for which treatment blinding may
be critical. In contrast, for objective outcomes, such
as fever or death, blinding may be unnecessary.
Moreover, sometimes blinding cannot be accom-
plished. For example, a trial comparing mini-laparot-

omy versus laparoscopy for tubal sterilization would
be impossible to blind.

The terminology used for blinding is slippery. No
consensus exists concerning the terms single- , dou-
ble- , and triple-blinding (8). Hence, instead of these
shorthand terms, we suggest that investigators say
explicitly who was blinded (participants, clinicians,
data gatherers, etc.) and how the blinding was
achieved. In general, reports of randomized con-
trolled trials neglect to provide readers with this
information.

Placebos are often used to maintain blinding. A
placebo is a pharmacologically inactive drug or agent
that is given to the control group in a trial. Admin-
istration of a placebo to the control group balances
the psychological placebo effect that occurs in the
experimental group. In addition, it maintains blind-
ing. Use of a placebo is appropriate when no estab-
lished therapy exists for a condition; if an effective
treatment is available, then use of a placebo is inap-
propriate and unethical. Instead, the new treatment
can be compared with an existing treatment.

When used, placebos should be identical in appear-
ance, smell, and taste to prevent deciphering of the
treatment assignments. When disparate interventions
are being compared (e.g., an injection versus a tab-
let), placebos can still be used to maintain blinding.
In this situation, a double-dummy approach is help-
ful: each participant receives one active and one
inactive treatment. For example, those assigned to
the injection group would receive an active injection
and a placebo tablet, whereas those allocated to the
tablet group would get a placebo injection and an
active pill (identical to the placebo tablet).

EXCLUSIONS FROM A TRIAL

Randomized controlled trials commonly have two
types of exclusions, those before and those after
randomization (9). The impact of these types of ex-
clusions differs. Exclusions before randomization
are common in most randomized controlled trials.
Volunteers are admitted to randomized controlled
trials only after having passed eligibility criteria
specified in the study protocol. These criteria range
from medical (e.g., one treatment would not be safe
for the potential participant) to logistical (e.g., the
prospective participant is deemed unlikely to return
for follow-up visits). Whether capricious or reason-
able, none of these exclusion criteria will bias the
study: the internal validity should be intact if the trial
is properly done. What may suffer from extensive
exclusions before randomization is external validity:
the trial may include such an eclectic sample that
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readers cannot extrapolate the results to their
patients.

In contrast, exclusions after randomization open
the door to bias. Many investigators and readers fail
to appreciate that the only unbiased comparison
groups are those initially composed by the random-
ization. Any attrition after that leads to groups that
are no longer comparable (unless the erosion is ran-
dom, which is usually not the case). Hence, the
guiding principle is to conduct an intention-to-treat
analysis. Stated alternatively, “once randomized, al-
ways analyzed.” Each participant should be analyzed
with the group to which he or she was initially
assigned. . . .regardless of what occurs thereafter.

A common error is to focus the analysis on only
those participants who complied with therapy. Since
noncompliance does not occur at random, this dis-
torts the comparison. The primary analysis in any
trial should be the intention-to-treat analysis of all
participants for whom information is available. Other
secondary analyses, such as those with perfect com-
pliance are acceptable, provided researchers plan
these in advance and designate them as nonrandom-
ized (cohort) comparisons. Few reports of random-
ized controlled trials provide readers sufficient detail
to confirm that the appropriate unbiased analysis was
done (9).

The best way to deal with exclusions after random-
ization is not to have any. In this regard, an ounce of
prevention may be worth a ton of explanations. For
example, randomization should be done at the last
possible moment to minimize dropouts after random-
ization but before treatment.

A common cause of exclusions after randomization
is eventual discovery of ineligibility. Trials com-
monly enroll participants who, on subsequent inspec-
tion, should not have been recruited. They clearly
violate the inclusion criteria, but this was overlooked
or misunderstood on entry. A common response is to
drop these inappropriate participants from the anal-
ysis. However, this tactic likely introduces bias, since
this discovery after the fact is unlikely to be random.
For example, those with side effects or with an un-
favorable outcome probably receive greater scrutiny
than other participants and thus are more likely to be
found to be ineligible. In general, these participants
should remain in the trial and be analyzed in the
groups to which they were assigned.

Deviations from the protocol are another com-
mon (but improper) reason for dropping partici-
pants from a trial. Many investigators exclude
them to maintain the “purity” of the treatment
groups and to provide a “fair” comparison. In

reality, those who deviate from one treatment may
be so different from those who do not comply with
the other treatment that the remaining comparison
is highly biased. The bottom line is that, no matter
what happens during the course of the trial, all
participants should be analyzed with their original
treatment groups. All an investigator can test in a
trial is the policy of giving the treatment, and not
the treatment itself. However, this is precisely
what clinicians need to know: how will the policy
of giving the treatment work in the real world, in
which noncompliance is common? Inclusion of a
flow chart (71), which tracks all participants
through all phases of a trial, enables readers to see
if the appropriate analysis has been done.

Loss to follow-up can also bias a randomized
controlled trial. Any losses to follow-up impair the
internal validity of the study. However, if that loss is
different between the comparison groups, major
damage may result. Again, prevention is better than
cure. Avoiding enrollment of those considered un-
likely to follow-up may help. For those enrolled,
additional contact information, such as the telephone
number of a friend or relative who is likely to know
the whereabouts of the participant, is useful in track-
ing. Hiring personnel expressly to track participants
has led to high rates of follow-up in even developing
countries (72, 73). Keeping the data collection ques-
tionnaire brief and the follow-up sites convenient can
also promote follow-up.

How much loss to follow-up is too much? The an-
swer depends on the trial. For some, in which the
participant is under observation and the outcome is
quickly determined, losses should be negligible. An
example would be immediate morbidity of childbirth in
hospital. In contrast, community trials running over
several years may encounter loss rates that threaten the
internal validity. Some have suggested a 5-and-20 rule
of thumb. Trials with less than 5% loss to follow-up are
probably secure; those with rates higher than 20% may
be unsalvageable. Few trials with losses in excess of
20% would be able to withstand the charge of bias.
Another rule of thumb is that the loss-to-follow-up rate
should not exceed the outcome event rate (9). Simply
put, the only loss-to-follow-up rate that avoids a biased
comparison is zero.

UNEQUAL SAMPLE SIZES

Many investigators (and readers) expect treatment
groups to have equal sizes in a randomized controlled
trial. Indeed, in published reports the numbers assigned
to treatment groups are more similar than should occur
by random chance alone (11). However, precisely equal

Clinical Research—A Baedeker ● Supplement S49



sample sizes contribute little to statistical power and
may paradoxically impair the unpredictability of the
trial. Sample size requirements are influenced little by
unequal group sizes until the disparity approaches a
ratio of about 2:1 between them.

Unequal sample sizes are useful in trial in which
blinding is not feasible and in which random per-
muted blocks of a fixed length are used. Those in-
volved with recruiting and enrolling participants may
figure out the block size, tally the numbers assigned
as the trial progresses, and thus discern the upcoming
assignments for some potential participants at the end
of each block. For example, if the block length is
determined to be six, and three As and two Bs have
just been assigned, then the next participant is sure to
get B (analogous to counting cards used in a game of
blackjack). The sequence becomes transparent, and
allocation concealment repeatedly fails.

Unequal sample sizes help to guard against this
possibility. For trials with more than 200 partici-
pants, simple randomization is an appealing ap-
proach. The sequence is completely unpredictable,
and large discrepancies in assignments are un-
likely. For smaller trials, restricted randomization
may be preferred. We have proposed a hybrid
approach to restricted randomization that com-
bines the balance afforded by random permuted
blocks and the unpredictability conferred by sim-
ple randomization. In mixed randomization, sim-
ple randomization produces a block with specified
inequality in the numbers assigned to each group
(e.g., block of 10, with 3 As and 7 Bs). If this
imbalance is not achieved on the first try, this
sequence is discarded and another is chosen until a
block of the desired degree of imbalance results, a
process termed replacement randomization.
Thereafter, random permuted blocks continue the
allocation sequence. Use of long blocks and blocks
that randomly vary in length helps to prevent de-
ciphering the sequence. Another safeguard is the
introduction of an unbalanced block generated by
replacement randomization from time to time (11).

CONSORT GUIDELINES

The “gold standard” in clinical research now has its
own gold standard: the CONSORT guidelines (71).
This acronym stands for the Consolidated Standards
of Reporting Trials. These guidelines for the conduct
and reporting of randomized controlled trials have
been adopted by a variety of journals, including some
in obstetrics and gynecology. The guidelines, now in
their second version, are evidence-based as much as

possible. Importantly, early evidence suggests that
journals that have adopted these guidelines have had
more rapid improvement in the quality of their re-
ports than has a journal that did not adopt them (74).
The second CONSORT guidelines, published in
2001 (71), have corrected several glitches in the
original version (75). Nevertheless, the guidelines
should be considered a work in progress; additional
refinement is planned.

The CONSORT guidelines are succinct to a fault.
Hence, the authors of CONSORT wrote a longer
companion article (36), which provides supporting
documentation and examples from the published lit-
erature. Both those performing and those reading
randomized controlled trials need to be familiar with
CONSORT guidelines: they offer a road map for
avoiding bias in this type of research.

TYPE OF ASSOCIATIONS

When a reader discovers a statistical association
between exposure and outcome in a report, the next
job is to figure out what sort of association it might
be. Three basic associations exist: spurious, indi-
rect, and causal (3). The first type reflects bias, such
as information and selection bias. Indirect associa-
tions are due to confounding; the association is real
but due to the effect of the confounding factor and
not the exposure itself. The holy grail of clinical
research is discovery of the causal association, link-
ing an exposure to an outcome.

Despite their importance, causal associations are
often difficult to establish. Whereas in physics, in-
vestigators have laws of thermodynamics which are
constant and universal, researchers in clinical medi-
cine have only hypotheses with which to work. We
have few absolute truths. The more often the hypoth-
eses are tested and hold up to scrutiny, the more
likely they are to be true.

In the 1960s, Sir A. Bradford Hill proposed a
series of criteria for judging whether associations
are causal (76). The criteria have enjoyed wide use
over the years. Some criteria are strong, whereas
others are weak. For example, temporal sequence
is a strong criterion. If the outcome preceded the
exposure, then the hypothesis that the exposure
caused the outcome evaporates.

Strength of the association is another strong cri-
terion. The stronger the association between expo-
sure and outcome (measured by the relative risk or
odds ratio), the greater the likelihood of a cause-and-
effect relationship. For example, some epidemiolo-
gists suggest that a relative risk greater than 3 in a
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cohort study or 4 in a case-control study offers com-
pelling evidence of a causal association. Stated alter-
nately, bias would have to be very strong to account
for such a large effect.

Consistency is another useful criterion. In general,
one usually should not base practice on a single
study, no matter how large or well done. Repetition
of the finding in different populations, with different
study designs and different researchers, supports the
association being causal. An example would be the
highly consistent literature from around the world
indicating that use of combined oral contraceptives
protects against endometrial cancer later in life (77).
An important caveat is that consistent bias can result
in consistent bogus results, as has occurred with the
questions of abortion and breast cancer (62) and with
IUDs and salpingitis (78).

A dose-response relationship also argues for cau-
sation. If increasing amounts or duration of exposure
are linked with increasing effect, this provides fur-
ther support for causation. An example would be the
increased protection against ovarian cancer with in-
creasing duration of oral contraceptive use. Another
would be the increased risk of lung cancer as number
of pack-years of smoking increases (79). Hence, re-
searchers commonly try to demonstrate a biological
gradient of effect, rather than just reporting a dichot-
omous exposure, e.g., smoking, yes or no.

Specificity is a weak criterion, inasmuch as many
diseases have more than one cause. Rarely in medi-
cine does one exposure lead to one outcome only.
Biological plausibility is another weak one, limited
by our meager understanding of human biology. In
1970, the notion that sanitary hygiene products might
be linked with toxic shock syndrome would have
been rejected as ridiculous. Ancillary evidence can
be helpful. For example, the effect of HIV on human
lymphocytes in the laboratory is consistent with the
hypothesis that the virus causes AIDS in humans.
Reasoning by analogy is a Pandora’s box, opened
profitably by plaintiff’s lawyers. For example, be-
cause prenatal exposure to thalidomide caused birth
defects, then prenatal exposure to spermicide can
cause defects. This hypothesis, lacking support in the
medical literature, led to an award of over $5 million
to a plaintiff.

CONCLUSION

Understanding the basic taxonomy of clinical re-
search is a prerequisite to critical reading of the
literature. Most published reports in obstetrics and

gynecology are observational. The results of these
may be more capable of extrapolation to one’s prac-
tice than those of experimental studies, but biases in
observational research compromise internal validity.
When reading observational studies, a four-point
check list (selection bias, information bias, con-
founding, and chance) is a useful approach. When
reading randomized controlled trials, the CONSORT
guidelines (71) should be used as the standard. Pub-
lished research reports using dichotomous outcomes
should provide raw numbers, measures of frequency
(such as rates), measures of association (such as
relative risks), and 95% confidence intervals (to in-
dicate precision). Hypothesis testing with P values
alone is not recommended. As with surgery, critical
reading is a learned skill. Proficiency grows with
practice. Learning to read critically is both fun and
important (for rust-proofing one’s practice). We hope
this brief Baedeker will help to guide the way.
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